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LETTER TO THE EDITOR 

On the point spectrum of the N-points Friedrichs model 

G Duerinckx 
Faculte des Sciences, Campus Plaine, Universitt Libre de Bruxelles, Code postal 231, 
Boulevard du Triomphe, B-1050 Bruxelles, Belgium 

Received 11 October 1982 

Abstract. We consider the N-points Friedrichs ( N  > 1) model and show, by means of a 
counterexample, that a theorem of Marchand about the non-existence of point eigenvalues 
embedded in the continuous spectrum is incorrect. 

We consider the N-points Friedrichs (1948) model. The spectrum of the ‘unperturbed’ 
Hamiltonian, Ho, for this model consists in a continuous part extending over some 
interval 9 of the real axis and a point spectrum with a finite number of eigenvalues 
(up; i = 1, . . . , N) embedded in the continuum. An interaction AV (A being a real 
coupling constant) couples the point spectrum to the continuum. 

In the spectral representation of Ho, the ‘perturbed’ Hamiltonian H = Ho + A V is 
given by a ‘matrix’ (Grecos 1978): 

0 (1) 
U N  A U N ( W ’ )  

Avl(w) . . .  AuN(w) w S ( w - U ’ )  

and an element ‘f’ of the Hilbert space X on which H acts is represented by a column 
vector: 

f e { f l ,  * - * ,fN,f(u)}. (2) 

The fi’s are complex numbers and f ( w )  is a square integrable function on 9. The 
Hilbert space X is equipped with the scalar product 

( f , g > =  f f;gi+J dw’f(u’)g(w’) 
i = l  § 

and the element ‘Hf’ is represented by 

(3) 

(4) 
For the one-point Friedrichs model (N = 1) it has often been shown (Friedrichs 

1948, Marchand 1967) that there does not exist any discrete eigenvalue of H embedded 
in the continuum if we assume that u l (w)  does not vanish Qn 9. An extension of this 
theorem for the N-points Friedrichs model, when N > 1, was given by Marchand 
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(1964). The purpose of this letter is to show, by means of a counterexample, that 
Marchand’s theorem about the absence of eigenvalues embedded in the continuum 
is incorrect. 

According to Marchand (1964) we assume that 
(i) u i ( w )  # 0 for all w E $ and for all i = 1, . . . , N except at the end-point(s) of $. 

In order to exclude some trivial cases, we assume also that 
(ii) u i ( w )  # u i ( w )  for almost all w E$ and for all i # j .  
We remark that, without any loss of generality, one may choose an ordering 

i = 1, .  . . , N such that u ~ ( w ) / u ~ ( o )  be finite at the end-point(s) of 9; for w E$, these 
quantities are finite in virtue of assumption (i). Therefore, one may expand u N ( w )  in 
terms of the other u i ( w )  as follows: 

where the w i ( w )  are given by ( i  = 1, . . . , N - 1) 

w ~ ( o )  = u N ( o ) / ( N  - l)Ui(w).  (6) 

Let us now consider the eigenvalue problem for H :  

( W E - V ) f k  + A  [$dw’ak(W’)f(W’)f(W’)=O k =1, .  . . , N (7) 

N 

A 1 ~ j ( ~ ) f i  +(U - v)f(w) = 0 
j = 1  

and let us assume the point eigenvalue, v, to be embedded in the continuum, i.e. 
v E 9. Following Marchand one has 

N 

f ( w ) = - A  1 ujCw)fi/Cw-v) w f u  
i = l  

but from equation (8) one also gets (putting w = v )  

N 

A 1 u , ( u ) f i = O  
j = l  

so that, instead of equation (9), we have 
N 

f (w)=-A { [u j (w) -u j ( v ) I / (w  - ~ ) } f i .  
j = l  

(9) 

Equation (11) is defined even for w = v and it is a square integrable function. 
Marchand’s theorem about the absence of eigenvalues (of H )  embedded in the 
continuum is, therefore, wrong as we shall see by means of a counterexample. 

Before going on to this counterexample, let us rewrite (1 1) in a more appropriate 
form. Using ( 5 )  we rewrite (8) and (10) as follows 
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Equation (13) admits a trivial solution 

f i  = - w j ( V ) f N  j = l , .  . . , N - 1  (14) 

which is, by assumption (i), the only solution in the case N = 2 (two-points Friedrichs 
model). Using (12) and (14) we get 

The coefficient f N  is fixed by the normalisation condition. Insertion of (14) and (15) 
into the left-hand side of (7) gives 

(16) 

0 2 N - ’  W N - V - A  & ~ j ( u ) = O  
j = l  

with 

The eigenvalues embedded in the continuum are given by the solutions of (16) and 
(17) and we will show now that for some choices of ( u i ( w ) ;  i = 1 , .  . . , N) these 
equations admit a solution U €9 to which corresponds a finite and real value for the 
coupling parameter A. 

Example 1 .  We consider the two-points Friedrichs model (N = 2)  and we choose 
w l ( w )  = U  and 9 = [0, +CO). Assumptions (i) and (ii) are satisfied if we assume that 
u l ( w )  # 0 for all o E 9. Equations (16) and (17) become 

(19) 

(20) 

(U? - V)V +A2no = 0 
0 2 

0 2 - u - A  n l = O  

with 
c +w 

nk = J dw o k / u l ( w ) / 2  k = 0, 1. 
0 

Equations (19) and (20) admit two solutions 

2u* = (w?-no/nl) * [U?-  no/n1)2 +4wino/n11”~ 

A: =(w:-vvi ) /n l .  (23) 

( 2 2 )  
to which correspond respectively 

By assumption oi>O and thus u + > O ,  u - < O .  If w i > w ? ,  then w ? < u + < w :  and 
A S  > O .  It is thus not necessary to require that w ?  also be embedded in the continuum. 
Indeed, if w 1  = -no/nl and w2 = 3no/nl ,  then U +  = no/nl with A: = 2no/nl and U- = 
-3no/n 1 with A - = 6no/n 1. 

0 0 

2 

Example 2. We consider again a two-points Friedrichs model and we choose 

u I ( w )  = a J ; I / ( w  - w ? + i a )  u 2 ( w ) = p & / ( w  -w:+ip) (24) 
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and 9 = (-CO, +CO). Equations (16) and (17) become 

(25) 

(26) 

( w l - V ) ( V - w l + i a ) [ o : - w ; + i ( a  0 0 +p)]+7rA2pa[w:-w~-i(a -p)]=O 

(U ;  - V ) ( V  - U :  + ip)[w? - U :  - i(a + p ) ]  + TA ’ y p [ w :  - w !  - i(a - p)] = 0. 

Let p and y be given by 
0 0 2  pa = ( w ’ - w l )  - (a2-P2)  

ap = (0; - w :y + (a - p 2). 

Equations (25) and (26) then have one real solution 

to which corresponds 

A = [ (U ;  - U?)’ + (a + ,!?)’]/47r(w; -U:)’. 

It is interesting to note that this solution is related to the existence of the point 
eigenvalue os of the unperturbed Hamiltonian Ho. We shall illustrate this point by 
studying the analytic continuation of a dispersion relation. 

Indeed we know that the poles of the resolvant of H ,  i.e. the point spectrum of 
H, are given by the solutions of a dispersion relation (Grecos 1978, Marchand 1967): 

0 = A ( V )  =det(qkj(V)) (31) 

q k j ( V )  = (U :- V)Skj ’@kj(V) (32) 

with 

and 

Here Skj = 1 if k = j  and 0 if k # j .  
For the example under consideration the analytic continuation of the dispersion 

relation is trivial because the continuous spectrum runs from -CO to +CO. The analytic 
continuation from Im z > 0 to Im z < 0 is given by 

O =  A + ( z ) = P + ( z ) / [ ( z  -w?+ia) (z  - w ; + i p ) ]  (34) 
with 

P + ( z )  = [ (U:  - z ) ( z  - W I  + ia) + T A  2 p a ] [ ( w ~  - z ) ( z  - U :  + ip) + nh’yp] 0 0 

- 47r’A 4p y (a@)’ 
(w:-w?,’ + (a +py’ (35) 

For A = 0, A+(z) has two real zeros (09; i = 1,2) .  For A # 0, A+(z) has four complex 
roots (zq(A); i = 1 , .  . , ,4 )  which tend respectively to w?, w;,-ia and wi- ip  at the 
limit A -P 0. The trajectories of these roots, as functions of A, are shown in figure 1, 
As we can see one has z:(A = Ao) = vo. 

Let us end by noting that solutions to the eigenvalue problem are given by the 
solutions of (16) and (17) or by the solutions of the dispersion relation (31). Thus 
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Figure 1. Trajectories of {zp(A); i = 1, . . . , 4 }  with U: = 1, U," = 5, (I = 4 and (I = 2. 
denotes 27,  - denotes z,", *denotes 2:  and -0-0- denotes 2:.  

there is a connection between these equations. Indeed, using ( 5 ) ,  we obtain ( k  = 
1,  . . . ,  N )  

N-1 

u k N ( v )  = C (&kj(v) + wj(v)ukj(v))  (36) 

and A ( v )  can be written in the form (change column N by column N -  
z:;;' w i ( u )  columnj) 

j = l  

7)11(v) * * 

7 N . N - I  

(37) 
This relation shows that any solutions of (16) and (17) are also solutions of (31) but 
the converse is not true. Equations (16) and (17) thus give only some solutions to 
the eigenvalue problem. 

I would like to thank A Grecos for suggesting this problem. 
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